Morphology and crystallization kinetics of polyethylene/long alkyl-chain substituted Polyhedral Oligomeric Silsesquioxanes (POSS) nanocomposite blends: a SAXS/WAXS study
نویسندگان
چکیده
The dispersal, quiescent crystallization kinetics and morphology of a series of unique polyethylene ‒polyhedral oligomeric silsesquioxanes (PE-POSS) nanocomposite blends is presented. POSS molecules with long linear alkyl-chain substituents were blended at one composition into a commercial low density polyethylene. Time-resolved Smalland WideAngle X-Ray scattering (SAXS/WAXS) and thermal techniques were used to elucidate the affect that POSS and its substituent groups have on the dispersal and crystallization kinetics of the host polymer. The miscibility and dispersal of the POSS molecules was seen to increase with the increasing alkyl-chain length substituents suggesting increased compatibility and interaction with the host polymer chains. The POSS molecules act as nucleating agents increasing the crystallinity, crystallization kinetics and influencing the final lamellar morphology. Thus, these unique POSS compounds show great potential as nancomposite filler particles in polyolefins where the alkyl-chain substituent plays a vital role in its compatibility and subsequent improvement of physical properties in the host polymer.
منابع مشابه
Crystallization and morphology development in polyethylene
The dispersion, morphology and crystallization kinetics of low density polyethylene (LDPE) octakis(noctadecyldimethylsiloxy)octasilsesquioxane (POSS) nanocomposite blends was investigated. Novel octakis(dimethylsiloxy)octasilsesquioxane (Q8M8) molecules were octafunctionalised with octadecyl alkyl-chains (Q8C18) and blended with 0.25-10 wt% loadings into a commercial LDPE. Time-resolved Smallan...
متن کاملAb initio analysis of the structural properties of alkyl-substituted polyhedral oligomeric silsesquioxanes.
Ab initio quantum mechanical calculations have been performed to establish the potentials for alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) monomers RxH8-x(SiO1.5)8. More specifically, we have examined the unsubstituted POSS (SiO1.5H)8 cage as well as linear and cyclic alkyl-substituted cages where one of the terminating hydrogen atoms is replaced by a hydrocarbon group, that is...
متن کاملStructure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes
Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional gro...
متن کاملEffect of Solvent properties on Crystallinity and Morphology of Octavinyl-POSS: A Comparative Study
Polyhedral Oligomeric Silsesquioxanes (POSSs) are a class of hybrid structures synthesized through hydrolytic condensation (Sol-Gel method) of trifunctional silane monomers under specific conditions. Octavinyl silsesquioxane (OVS) nanostructures are comprised of a rigid inorganic silica core surrounded by vinyl functional groups with an under-developed synthesis procedure. Generally, POSS morph...
متن کاملNano-colloidal silica-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropyltriethoxysilane as high performance catalyst for the preparation of furan-2(5H)-ones
An efficient and rapid method for the synthesis of 3,4,5-substituted furan-2 (5H)-ones has been achieved through a three-component reaction of aniline, dialkyl acetylenedicarboxylate, and aromatic aldehydes using nano-colloidal silica-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropyltriethoxysilane (nano-colloidal silica @APTPOSS) as a superior catalyst under m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013